4^n*8^n+1=16

Simple and best practice solution for 4^n*8^n+1=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4^n*8^n+1=16 equation:



4^n*8^n+1=16
We move all terms to the left:
4^n*8^n+1-(16)=0
We add all the numbers together, and all the variables
4^n*8^n-15=0
Wy multiply elements
32n^2-15=0
a = 32; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·32·(-15)
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{30}}{2*32}=\frac{0-8\sqrt{30}}{64} =-\frac{8\sqrt{30}}{64} =-\frac{\sqrt{30}}{8} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{30}}{2*32}=\frac{0+8\sqrt{30}}{64} =\frac{8\sqrt{30}}{64} =\frac{\sqrt{30}}{8} $

See similar equations:

| 3/2=1.12^n | | 3x‐2/5=50 | | x+10=15^0÷10 | | 4^(3x)=80 | | 3(2x+1)=8x-11 | | 5-x=-3-3 | | 4x+3=6x-19 | | d÷9=5 | | 6e=144 | | 10x-10-7x=x | | m+(2)=m(2) | | m+2=m2 | | 3x^+5x-16=5x-13 | | 3÷x=1.5 | | m=2(2)+2+1 | | 8w=4800w= | | 55=2x+11 | | 13.217=t-24.45 | | 2m/2=9-3m | | (3x=4)2=7(3x+4) | | 0=a(11/2)^2+(-9/4) | | 15+8•x=31 | | 3x+4=6x-1- | | 0=a(2-1/2)^2+-9/4 | | m/2=9/2 | | 4a/7-8=3a+8 | | 8=-4(u+2) | | (D2-7D+12)y=0 | | 3x+15=6x+27 | | 0=a(2-1/2)+-9/4 | | 20=4e+4 | | 44x+28=644 |

Equations solver categories